If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7z^2+20=12z^2
We move all terms to the left:
7z^2+20-(12z^2)=0
We add all the numbers together, and all the variables
-5z^2+20=0
a = -5; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-5)·20
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*-5}=\frac{-20}{-10} =+2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*-5}=\frac{20}{-10} =-2 $
| 2x-5(15-3x)=10 | | 5/6b=35 | | 4x-15=x+2 | | 13y+17=4 | | 1/2a=27.2 | | 25+4y-2+18=59 | | x(2x+9)=656 | | 1/2a=27.2(2) | | q/3-4=-2 | | X=11+3x21 | | 0=4.9*t^2+8.2*t-30 | | 49x-5=180 | | 5x-5=-11+7x | | -2=-4—7y+1)+5(8+2y | | 3+8s=19 | | 10+3a-4a+4=2a-8 | | -2=4(7y+1)+5(8+2y | | -3x+7x=27 | | q/2+1=-1 | | 7+u=10 | | 6y+47=-7y-21 | | 46+7x=95 | | 3a+12=4a-30 | | 8/3x+1/4=1/2-3/4x | | 2x+1/9=1+x/6 | | 30+d=64 | | 8x+54=36 | | 5.25=0.75y | | 8(4x-3)=4(8+x) | | 3(2b+3)+2b=-15 | | 8/m=26 | | 6(x+1)=2(3x3x) |